

# Asian Journal of Oral Health and **Allied Sciences**



Original Article

# Comparative evaluation of Citrus limetta peel extract and essential oils as natural solvents for gutta-percha dissolution: An in vitro study

Divyanu Sinha<sup>1</sup>, Piyush Varsha<sup>1</sup>, Gaurav Jain<sup>1</sup>, Preeti Shukla<sup>1</sup>, Sonali Verma<sup>1</sup>, Pradyumna Misra<sup>1</sup>

<sup>1</sup>Department of Conservative Dentistry and Endodontics, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India.

#### \*Corresponding author:

Gaurav Jain, Professor, Department of Conservative Dentistry and Endodontics, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India.

drgauravj27@gmail.com

Received: 17 June 2025 Accepted: 30 August 2025 Published: 28 October 2025

10.25259/AJOHAS\_24\_2025

**Quick Response Code:** 



## **ABSTRACT**

Objectives: Giving a successful endodontic retreatment involves getting rid of all gutta-percha (GP) from the root canals. The traditional solvent chloroform is known for being toxic. More attention is being given to finding natural and biocompatible materials. This study hopes to see if sweet lime peel, eucalyptus, and orange oil are good natural alternatives to solvents in removing GP.

Material and Methods: Sixty GP cones were chosen and split into four groups (15 cones in each group), namely control (with chloroform), Citrus limetta extract, eucalyptus oil, and orange oil. 5 min of exposure at 37°C was given to every cone by submerging them in 1 mL of solvent. When immersion was done, the cones were taken out, blotted, and weighed once again. The amount a material gained in weight was calculated to see how well it dissolved. Analysis of the data was completed using analysis of variance and Tukey's multiple comparisons test (P < 0.05).

Results: Chloroform produced the highest dissolved amount with 45.3 ± 1.5 mg, whereas eucalyptus oil came in second with 38.7  $\pm$  2.1 mg, C. limetta extract was third with 34.2  $\pm$  1.9 mg, and orange oil dissolved 31.6  $\pm$ 2.3 mg the most. Results from statistical analysis showed that all tested groups were different from one another. Eucalyptus oil demonstrated the highest rate of dissolution, followed by C. limetta among all herbal extracts.

Conclusion: Compared to reliably used herbal products, the potential for C. limetta peel's extract to dissolve GP is near to as that of eucalyptus oil and even higher than that of orange oil. Yet, more studies are required to show how practical this extract is in retreatment cases.

Keywords: Citrus limetta, Endodontic retreatment, Essential oils, Eucalyptus oil, Orange oil

# INTRODUCTION

Endodontic retreatment is used to solve problems that have resulted from the failure of the original root canal treatment. The first important step in retreating of a root canal includes taking out the existing gutta-percha (GP) to ensure that the old filling materials have been eliminated and the canal system cleaned and sealed again.[1] Usually, GP is removed from the root canal using mechanical and chemical methods. Due to their rapid dissolution ability, chloroform and xylene are highly employed chemical solvents.<sup>[2]</sup> However, people are worried about their toxicity, possible link to cancer, and effects on the environment, which means safer and compatible alternatives must be developed.[3,4]

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2025 Published by Scientific Scholar on behalf of Asian Journal of Oral Health and Allied Sciences

Lately, more people have shown interest in the use of natural plant-based substances for undertaking endodontic tasks. It has been studied whether eucalyptus oil and orange oil can help soften and dissolve GP, thanks to their useful biological properties, good scent, and pleasant taste.<sup>[5,6]</sup> As these oils are not toxic and eco-friendly, they are suitable for use in a medical setting.

Citrus limetta, commonly called sweet lime, is a citrus fruit that has limonene, flavonoids, and essential oils on its peel. The great solvent qualities of phytochemicals have made them useful in both pharmaceutical and dental solutions for their ability to prevent and treat infections and inflammation.<sup>[7]</sup> Even though C. limetta peel contains similar chemicals to other citrus-based solvents; endodontic retreatment with its extract has not been studied much yet.

Hence, the current study intends to assess and measure the dissolving capabilities of C. limetta peel extract versus eucalyptus oil, orange oil, and the conventional chemical solvent, chloroform. The purpose of this research is to find a substitute drug that dissolves effectively and does not endanger the body.

#### MATERIAL AND METHODS

The present *in vitro* study was designed to compare the efficacy of C. limetta peel extract, eucalyptus oil, and orange oil with chloroform in dissolving GP cones. A total of 60 standardized GP cones (International organization for standardization [ISO] size 40) were selected and randomly divided into four groups (n = 15/group) based on the solvent used.

# Preparation of chloroform

Chloroform, being volatile, is mixed with ethanol as a solvent to minimize evaporation.

# Preparation of C. limetta peel extract

Fresh peels of C. limetta were collected, washed, shadedried, and powdered. The powder was subjected to Soxhlet extraction using ethanol as the solvent. The extract was concentrated using a rotary evaporator and stored in an airtight amber container at 4°C until use.

#### Grouping of samples

- Group I (Control): Chloroform
- Group II: C. limetta peel extract
- Group III: Eucalyptus oil
- Group IV: Orange oil

#### Procedure for dissolution test

Each GP cone was weighed using a precision digital balance (accuracy ± 0.0001 g), and the initial weight was recorded. The cones were then immersed individually in 1 mL of the respective solvent at 10% concentration[8] in clean, labeled amber glass vials.[9] All samples were kept in a thermostatically controlled incubator at 37°C for 5 min to simulate intraoral temperature conditions.[10]

After the immersion period, the cones were removed using forceps, gently blotted with filter paper for 24 h at room temperature to remove excess solvent, and reweighed immediately [Figure 1]. The amount of GP dissolved was calculated by subtracting the post-immersion weight from the initial weight.[11]

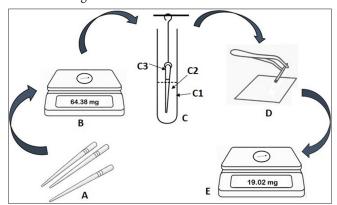



Figure 1: Schematic diagram representing dissolution test methodology. (A) Gutta-percha (GP) cones (B) pre-immersion weight of GP measured (C) immersion of GP into GP solvents at 37°C for 5 min (C1) test tube (C2) GP solvent (C3) GP (D) blotting of GP with filter paper to remove excess solvent (E) post-immersion weight of GP measured and weight difference is calculated.

# Statistical analysis

The data were entered into Microsoft Excel and analyzed using the Statistical Package for the Social Sciences software (version 25.0; IBM Corp., Armonk, NY, USA). One-way analysis of variance (ANOVA) was used to compare the mean dissolution values among the four groups. Tukey's post hoc test was applied for pairwise comparison. P < 0.05 was considered statistically significant.

# **RESULTS**

The mean amount of GP dissolved by each solvent after 5 min of immersion is presented in Table 1. Among all groups, chloroform (Group I) exhibited the highest dissolution capacity with a mean mass loss of  $45.36 \pm 1.52$  mg. This was followed by eucalyptus oil (Group III) with  $38.74 \pm 2.10$  mg, C. limetta peel extract (Group II) with 34.21 ± 1.93 mg, and orange oil (Group IV) with the lowest dissolution at  $31.58 \pm 2.27$  mg. GP was observed to be softer than before as it gets converted to  $\alpha$ -phase.

A statistically significant difference was found among the four groups (P < 0.001) using one-way ANOVA. Post hoc analysis (Tukey's test) revealed that chloroform was significantly more effective than all natural solvents (P < 0.05). Eucalyptus oil showed significantly higher dissolution than orange oil (P = 0.02), while C. limetta extract exhibited significantly greater solubility than orange oil but was slightly less effective than eucalyptus oil (P = 0.04) [Table 2].

These results suggest that while chloroform remains the most effective solvent, C. limetta peel extract demonstrates promising dissolving ability comparable to that of eucalyptus oil and superior to orange oil.

**Table 1:** Mean gutta-percha dissolution (in mg) by different solvents.

| Group                  | Solvent                     | Mean±SD (mg) |  |
|------------------------|-----------------------------|--------------|--|
| I                      | Chloroform                  | 45.36±1.52   |  |
| II                     | Citrus limetta peel extract | 34.21±1.93   |  |
| III                    | Eucalyptus oil              | 38.74±2.10   |  |
| IV                     | Orange oil                  | 31.58±2.27   |  |
| SD: Standard deviation |                             |              |  |

Table 2: Statistical comparison of mean gutta-percha dissolution between groups.

| Comparison                                              | Mean difference (mg) | P-value |  |
|---------------------------------------------------------|----------------------|---------|--|
| Chloroform versus Citrus limetta                        | 11.15                | < 0.001 |  |
| Chloroform versus eucalyptus                            | 6.62                 | 0.001   |  |
| Chloroform versus orange oil                            | 13.78                | < 0.001 |  |
| C. limetta versus orange oil                            | 2.63                 | 0.035   |  |
| C. limetta versus eucalyptus                            | -4.53                | 0.042   |  |
| Eucalyptus versus orange oil                            | 7.16                 | 0.020   |  |
| <i>P</i> <0.05 is considered statistically significant. |                      |         |  |

### DISCUSSION

To properly disinfect and reshape the root canal, all GP must be removed during retreatment. It has been customary to use chloroform as the preferred chemical for GP dissolution because of how well it works and its fast action.[1] Still, because it is documented to be toxic to cells, volatile, and possibly cancerous, more studies on safer alternatives are required.[2,3]

The amount of GP dissolved by C. limetta peel extract was assessed and measured against that of eucalyptus oil, orange oil, and chloroform. The dissolution of chloroform was proven to be greatest, which coincides with previous reports.<sup>[4,5]</sup> Eucalyptus oil worked best out of all the natural solvents used, and C. limetta peel extract and orange oil came in after that. Research done in the past also reveals that eucalyptus oil works better than other essential oils because of its rich eucalyptol, which is able to disperse putty-like filling materials in the mouth.

The first test of C. limetta peel extract found that it has good dissolving properties. The peels of many citrus fruits, for example, C. limetta, have a lot of d-limonene, a chemical used for cleaning and in medicine and dental medicines.[12] Even though d-limonene is slower in softening GP than chloroform, it does it effectively.[13] It has been suggested that the presence of limonene and flavonoids in large amounts in C. limetta extract makes it respond similarly to eucalyptus oil by weakening the GP.[14,15]

Even though orange oil is natural and safe for humans, it dissolved less than the other tested solvents. [16,17] The reason its efficiency may be weaker is because of differences in limonene, and it could also be due to having extra non-polar substances that weaken the solvent's action.[18]

According to the results, C. limetta peel extract and eucalyptus oil are useful options for endodontic retreatment. Because they are safe, accepted well within the body, and environmentally sustainable, clinicians can choose these as replacements for routine synthetic solvents. Nonetheless, it is necessary to see that what happens in the laboratory may not relate directly to outcomes in patients. Examples of such influences include solvents reaching into root canals, liaisons between endodontic sealers and various materials, and both debris and moisture in the canals.[19-21]

Researchers should explore more about the toxicity, the ability to kill bacteria, and the long-term traits of these natural solvents when they contact dentin and periapical tissues. The effectiveness and usefulness of C. limetta extract might also rise with proper concentration and formulation.

#### Limitations

The current study is an initial exploration of herbal GP solvents for endodontic use and is not commercially available. Moreover, the toxicity of herbal extracts on human cells used in the present study should be assessed along with any drug interaction, as some medicinal plants are intrinsically toxic by virtue of their constituents and can cause adverse reactions if not used in an appropriate concentration. Further clinical studies are required to assess their efficacy and shelf life, enabling their incorporation into routine dental practice. Additionally, the efficacy of the solvents on the sealers should be tested, as the study only considered the GP.

# **CONCLUSION**

According to the present study, chloroform does the best job of dissolving GP, but eucalyptus oil and C. limetta peel extract can be a promising and effective natural alternative. Being both biocompatible and naturally sourced, eucalyptus oil and C. limetta extract might be a good alternative when doing endodontic retreatment, calling for more studies.

Ethical approval: The research/study is approved by the Institutional Review Board at Saraswati Dental College and Hospital, Lucknow, number #SD1CE16122024R, dated December 16th, 2024 Ref. SDC&H/IRDC/2024/MDS/G01.

Declaration of patient consent: Patient's consent is not required as there are no patients in this study.

Financial support and sponsorship: Nil.

**Conflicts of interest:** There are no conflicts of interest.

Use of artificial intelligence (AI)-assisted technology for manuscript preparation: The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing or editing of the manuscript and no images were manipulated using AI.

#### REFERENCES

- Sharma Y, Kumar SP, Girish SA, Pandey D, Ahmed M, Ahmed S. Comparative evaluation of solubility of gutta-percha in three different solvents: A cone-beam computed tomography (CBCT) study. Cureus 2022;14:e26788.
- Aminsobhani M, Razmi H, Hamidzadeh F, Rezaei Avval A. Evaluation of the antibacterial effect of xylene, chloroform, eucalyptol, and orange oil on Enterococcus faecalis in nonsurgical root canal retreatment: An ex vivo study. Biomed Res Int 2022;2022:8176172.
- Rehman K, Khan FR, Aman N. Comparison of orange oil and chloroform as gutta-percha solvents in endodontic retreatment. J Contemp Dent Pract 2013;14:478-82.
- Reddy N, Admala SR, Dinapadu S, Pasari S, Reddy MP, Rao MS. Comparative analysis of efficacy and cleaning ability of hand and rotary devices for gutta-percha removal in root canal retreatment: An in vitro study. J Contemp Dent Pract 2013;14:635-43.
- Hülsmann M, Stotz S. Efficacy, cleaning ability and safety of different devices for gutta-percha removal in root canal retreatment. Int Endod J 1997;30:227-33.
- Bueno CE, Delboni MG, De Araújo RA, Carrara HJ, Cunha RS. Effectiveness of rotary and hand files in gutta-percha and sealer removal using chloroform or chlorhexidine gel. Braz Dent J 2006;17:139-43.
- Tejaswi S, Singh A, Manglekar S, Ambikathanaya UK, Shetty S. Evaluation of dentinal crack propagation, amount of gutta percha remaining and time required during removal of gutta percha using two different rotary instruments and hand instruments - an in vitro study. Niger J Clin Pract 2022;25:524-30.
- Atmeh AR, Alshaiji D, Abdunabi F, Alamri M, Khamis AH. Comparing the softening effect of three gutta-percha solvents on different types of gutta-percha with different application durations. Saudi Dent J

- 2024;36:281-5.
- Mushtaq M, Masoodi A, Farooq R, Khan FY. The dissolving ability of different organic solvents on three different root canal sealers: In vitro study. Iran Endod J 2012;7:198-202.
- 10. Tamse A, Unger U, Metzger Z, Rosenberg M. Gutta-percha solvents--a comparative study. J Endod 1986;12:337-9.
- Poggio C, Dagna A, Mirando M, Beltrami R, Chiesa M, Colombo M. Gutta-percha solvents alternative to chloroform: An in vitro comparative evaluation. EC Dent Sci 2017;15:51-6.
- 12. Bodrumlu E, Uzun O, Topuz O, Semiz M. Efficacy of 3 techniques in removing root canal filling material. J Can Dent Assoc 2008;74:721.
- Das S, De Ida A, Das S, Nair V, Saha N, Chattopadhyay S. Comparative evaluation of three different rotary instrumentation systems for removal of gutta-percha from root canal during endodontic retreatment: An in vitro study. J Conserv Dent 2017;20:311-6.
- Mushtaq M, Farooq R, Ibrahim M, Khan FY. Dissolving efficacy of different organic solvents on gutta-percha and resilon root canal obturating materials at different immersion time intervals. J Conserv Dent 2012;15:141-5.
- 15. Karataş E, Kol E, Bayrakdar İŞ, Arslan H. The effect of chloroform, orange oil and eucalyptol on root canal transportation in endodontic retreatment. Aust Endod J 2016;42:37-40.
- 16. Takahashi CM, Cunha RS, De Martin AS, Fontana CE, Silveira CF, Da Silveira Bueno CE. In vitro evaluation of the effectiveness of ProTaper universal rotary retreatment system for gutta-percha removal with or without a solvent. J Endod 2009;35:1580-3.
- Ma J, Al-Ashaw AJ, Shen Y, Gao Y, Yang Y, Zhang C, et al. Efficacy of ProTaper universal rotary retreatment system for gutta-percha removal from oval root canals: A micro-computed tomography study. J Endod 2012;38:1516-20.
- Marfisi K, Mercade M, Plotino G, Duran-Sindreu F, Bueno R, Roig M. Efficacy of three different rotary files to remove gutta-percha and Resilon from root canals. Int Endod J 2010;43:1022-8.
- 19. Khalilak Z, Vatanpour M, Dadresanfar B, Moshkelgosha P, Nourbakhsh H. In vitro comparison of gutta-percha removal with H-File and ProTaper with or without chloroform. Iran Endod J 2013;8:6-9.
- Susila AV, Loshini R, Sai S, Veronica AK. Gutta-percha dissolving ability of Citrus limetta, essential oils and a customized emulsion: An in vitro study. Endodontology 2024;36:75-9.
- 21. Guedes OA, Chaves GS, Alencar AH, Borges ÁH, Estrela CR, Soares CJ, et al. Effect of gutta-percha solvents on fiberglass post bond strength to root canal dentin. J Oral Sci 2014;56:105-12.

How to cite this article: Sinha D, Varsha P, Jain G, Shukla P, Verma S, Misra P. Comparative evaluation of Citrus limetta peel extract and essential oils as natural solvents for gutta-percha dissolution: An in vitro study. Asian J Oral Health Allied Sci. 2025;15:25. doi: 10.25259/AJOHAS\_24\_2025